據(jù)美國物理學(xué)家組織網(wǎng)近日報道,科學(xué)家一直希望用光子代替電子實現(xiàn)更快捷安全的光通訊,現(xiàn)在,科學(xué)家們成功證明,他們能更快速地(在幾納秒內(nèi))控制與目前光通訊網(wǎng)絡(luò)中所用光波波長一樣的光子的路徑和偏振,新光子電路可整合進現(xiàn)有的光通訊網(wǎng)絡(luò)中,從而顯著改進網(wǎng)絡(luò)的性能。最新研究朝實現(xiàn)光量子通訊邁進了一步。
英國布里斯托大學(xué)、赫瑞瓦特大學(xué)、荷蘭卡弗里納米科學(xué)研究所的科學(xué)家們將這項快速控制單光子的路徑和偏振的研究發(fā)表在最新一期《物理評論學(xué)快報》雜志上。
他們在對一個由電路組成的量子光學(xué)設(shè)備進行研究時發(fā)現(xiàn),單個光子會移動穿過這些電路,這些電路也能被重新配置從而改變光子的路徑和偏振方向。然而,這種量子光學(xué)電路無法快速操縱單光子和多光子的狀態(tài)。為了解決這一問題,他們使用了已被證明能在現(xiàn)有通訊調(diào)制器中進行快速操縱的鈮酸鋰波導(dǎo),并證明對電極附近的波導(dǎo)施加電壓能快速操控由波長為1550納米的一個或兩個光子組成的光的量子(包括路徑和偏振)狀態(tài),該波長正是現(xiàn)有通訊網(wǎng)絡(luò)中采用的波長。
領(lǐng)導(dǎo)該研究的布里斯托大學(xué)的達(dá)米恩·博諾表示:“在這個實驗中,我們演示了兩種電路配置,每種電路配置都會導(dǎo)致不同的量子狀態(tài),一次配置僅需幾納秒,而在以前的實驗中,每幾秒才能對電路進行一次重新配置?,F(xiàn)在的通訊網(wǎng)每天都在使用由同樣技術(shù)制成的開關(guān)來傳遞由光脈沖編碼的信息字節(jié),從原理上來講,這樣的開關(guān)也能用于單光子層面。”
博諾表示:“迄今為止,在芯片上操縱光的量子狀態(tài)一直依靠加熱器,其能作為慢速移相器來使用。最新研究表明,鈮酸鋰波導(dǎo)能采用一種與以前迥然不同的方法來更快速地操控光的量子狀態(tài)?,F(xiàn)在,我們不僅能打開和關(guān)閉光包以便按規(guī)定路線發(fā)送傳統(tǒng)信息,也能夠快速處理和操縱光的量子狀態(tài)。”
科學(xué)家們指出,能在單個平臺上快速控制單光子的偏振和路徑對基礎(chǔ)量子科學(xué)和量子技術(shù)來說都至關(guān)重要。博諾表示,制造這些設(shè)備的鈮酸鋰材料也能隨機產(chǎn)生光子,另外,具有超導(dǎo)性的單光子探測器也能被整合在這樣的芯片上。一個結(jié)合了能隨機產(chǎn)生光子的光源、電路以及探測器的技術(shù)平臺可用于以下幾方面:通過對幾個光子來源進行多路傳輸從而獲得可靠的單光子源、長距離量子通訊需要使用的量子繼電器、量子密碼學(xué)中用到的量子密鑰分配等。
轉(zhuǎn)載請注明出處。